

MAT8034: Machine Learning

Regularization and Model Selection

Fang Kong

https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

Part of slide credit: Stanford CS229

Outline

- Regularization
- Implicit regularization effect
- Model selection via cross validation
- Bayesian statistics and regularization

Regularization

Intuition

- Recall in the last lecture
 - Complex models may cause overfitting
- Objective

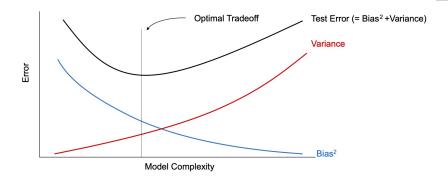


Figure 8.8: An illustration of the typical bias-variance tradeoff.

 Choose a proper model complexity to achieve the optimal bias-variance tradeoff

- Model complexity measure
 - A function of the parameters, e.g., L2 norm of the parameters

Regularization

Meaning of regularization

 Adding an additional term to control the model complexity and prevent overfitting

$$J_{\lambda}(\theta) = J(\theta) + \lambda R(\theta)$$

- $J(\theta)$: the original loss, e.g., MSE
- $R(\theta)$: the regularizer, typically non-negative
- $\lambda \ge 0$: regularization parameter

Regularization (cont'd)

Meaning of regularization

 Adding an additional term to control the model complexity and prevent overfitting

$$J_{\lambda}(\theta) = J(\theta) + \lambda R(\theta)$$

- Intuition
 - Find a model that both fit the data (a small loss J(θ)) and have a small model complexity (R(θ))
 - λ balances the loss and model complexity

Regularization (cont'd)

Meaning of regularization

 Adding an additional term to control the model complexity and prevent overfitting

$$J_{\lambda}(\theta) = J(\theta) + \lambda R(\theta)$$

Intuition

- Find a model that both fit the data (a small loss J(θ)) and have a small model complexity (R(θ))
- λ balances the loss and model complexity
 - Small λ : minimizing the original loss with the regularizer as the tie-breaker
 - Large λ : tends to find a simpler model

Common regularizer

L2 regularization

•
$$R(\theta) = \frac{1}{2} \|\theta\|_2$$

Prefer models with smaller L2 norm

- Also referred to as weight decay
 - Consider the stochastic gradient descent

$$\begin{aligned} \theta &\leftarrow \theta - \eta \nabla J_{\lambda}(\theta) = \theta - \eta \lambda \theta - \eta \nabla J(\theta) \\ &= \underbrace{(1 - \lambda \eta)\theta}_{\text{decaying weights}} - \eta \nabla J(\theta) \end{aligned}$$

Common regularizer (cont'd)

- Other influences: Impose structures on the model parameters
 - Suppose we already know the model is sparse
 - i.e., the non-zeros is small
 - We can then add regularization term: $\|\theta\|_0$
 - Such regularization narrows our search space and makes the complexity of the model family smaller
 - Regularization loss with $\|\theta\|_0$ is not continuous
 - Replace $\|\theta\|_0$ by $\|\theta\|_1$ in the loss can have similar effect of sparsity

Implicit regularization effect

Implicit regularization effect

New concept/phenomenon observed in the deep learning era

Meaning

The optimizers can implicitly impose structures on parameters beyond what has been imposed by the regularized loss

Intuition

In most classic settings

- The optimal solution is unique
- Any reasonable optimizer should converge to this point

In deep learning

- There are usually more than one (approximate) global minimum
- Different optimizers may converge to different global minima
- Though they have similar training loss
 - The solution may have dramatically different generalization performance

Illustration

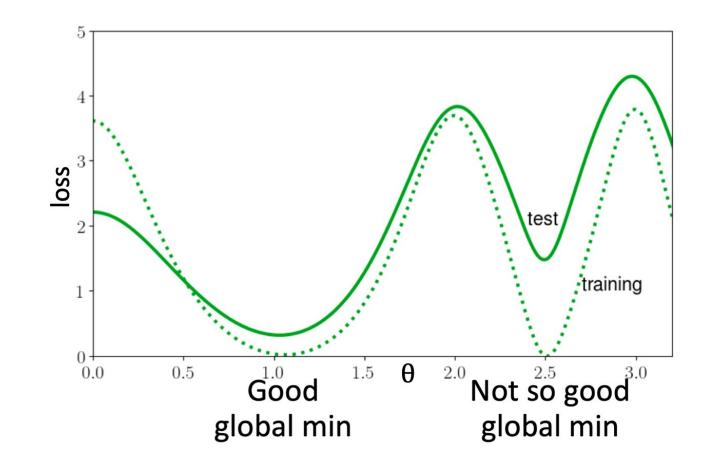


Illustration (cont'd)

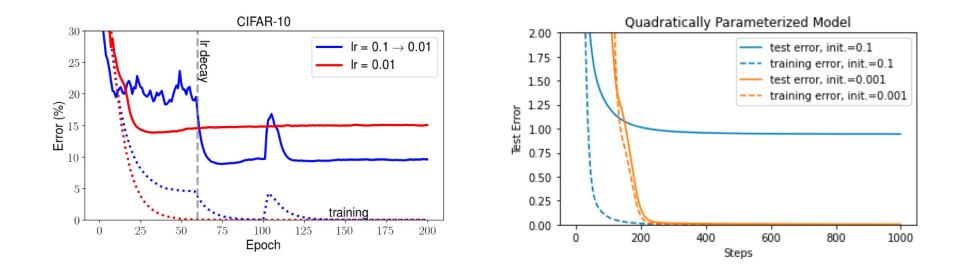


Figure 9.2: Left: Performance of neural networks trained by two different learning rates schedules on the CIFAR-10 dataset. Although both experiments used exactly the same regularized losses and the optimizers fit the training data perfectly, the models' generalization performance differ much. **Right:** On a different synthetic dataset, optimizers with different initializations have the same training error but different generalization performance.⁴

Summary

The role of optimizer

- Not only minimizing the loss, but also imposes implicit regularization and affects the generalization of the model
- Even though it achieves a small training error, there is still a space of improving generalization

What type of global minima may generalize better?

Still an active research area

- Some heuristics
 - Larger initial learning rate
 - Smaller initialization
 - Smaller batch size
 - Introducing momentum

Model selection

Formulation

To solve a problem, which model should we choose?

- SVM or logistic regression?
- For kernel methods, which order k of polynomial?

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_k x^k)$$

• Denote $\mathcal{M} = \{M_1, \dots, M_d\}$ as all the models to choose

Solution 1: Select the one with the minimum training loss?

- Given the training set *S*
 - 1. Train each model M_i on S, to get some hypothesis h_i .
 - 2. Pick the hypotheses with the smallest training error.
- What's the problem?

Solution 1: Select the one with the minimum training loss?

- Given the training set *S*
 - 1. Train each model M_i on S, to get some hypothesis h_i .
 - 2. Pick the hypotheses with the smallest training error.
- What's the problem?
 - Lower training error prefers complex models
 - These models usually overfits

Solution 2: Hold-out cross validation

- Split the training set *S*
 - $S = S_{train}$ (usually 70%) + S_{cv} (usually 30%)
 - Train each model M_i on S_{train} only, to get some hypothesis h_i
 - Evaluate h_i on S_{cv} , denote the error as $\hat{\varepsilon}_{S_{cv}}(h_i)$ (validation error)
 - Pick the hypothesis with the smallest validation error

- The CV set plays the role of testing set
- Evaluate the model in terms of approximate generalization error
- Avoid overfitting

Problem of hold-out cross validation

- The final model is only trained on 70% of the training set
- Especially in the case with small training set
 - Waste about 30% of the data

Improvement: k-fold cross validation

- 1. Randomly split S into k disjoint subsets of m/k training examples each. Lets call these subsets S_1, \ldots, S_k .
 - 2. For each model M_i , we evaluate it as follows:

For $j = 1, \ldots, k$

Train the model M_i on $S_1 \cup \cdots \cup S_{j-1} \cup S_{j+1} \cup \cdots S_k$ (i.e., train on all the data except S_j) to get some hypothesis h_{ij} . Test the hypothesis h_{ij} on S_j , to get $\hat{\varepsilon}_{S_j}(h_{ij})$.

The estimated generalization error of model M_i is then calculated as the average of the $\hat{\varepsilon}_{S_i}(h_{ij})$'s (averaged over j).

- 3. Pick the model M_i with the lowest estimated generalization error, and retrain that model on the entire training set S. The resulting hypothesis is then output as our final answer.
 - Typical choice: k=10

Bayesian statistics and regularization

Frequentist V.S. Bayesian

- Consider θ as the model parameter
- Frequentist view
 - θ is constant-valued but unknown
 - We need to estimate this parameter, such as MLE

$$heta_{\text{MLE}} = rg\max_{ heta} \prod_{i=1}^n p(y^{(i)} | x^{(i)}; heta).$$

- Bayesian review
 - θ is a random variable with unknown value
 - We can specify a prior distribution p(θ) on θ that expresses our "prior beliefs" about the parameters

Bayesian view

- Given a training set $S = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$
- Compute the posterior of θ

$$p(\theta|S) = \frac{p(S|\theta)p(\theta)}{p(S)}$$
$$= \frac{\left(\prod_{i=1}^{n} p(y^{(i)}|x^{(i)},\theta)\right)p(\theta)}{\int_{\theta} \left(\prod_{i=1}^{n} p(y^{(i)}|x^{(i)},\theta)p(\theta)\right)d\theta}$$

To predict the label of a new data x

$$p(y|x,S) = \int_{\theta} p(y|x,\theta) p(\theta|S) d\theta \qquad \mathbf{E}[y|x,S] = \int_{y} y p(y|x,S) dy$$

Bayesian view (cont'd)

- Given a training set $S = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$
- Compute the posterior of θ

$$p(\theta|S) = \frac{p(S|\theta)p(\theta)}{p(S)}$$

$$= \frac{\left(\prod_{i=1}^{n} p(y^{(i)}|x^{(i)}, \theta)\right)p(\theta)}{\int_{\theta} \left(\prod_{i=1}^{n} p(y^{(i)}|x^{(i)}, \theta)p(\theta)\right)d\theta}$$
Computationally difficult!
$$To predict the label of a new data x$$

$$p(y|x, S) = \int_{\theta} p(y|x, \theta)p(\theta|S)d\theta \qquad E[y|x, S] = \int_{y} yp(y|x, S)dy$$

Maximum a posteriori (MAP)

- Approximate the posterior distribution for θ
- Use single point estimate

$$heta_{ ext{MAP}} = rg\max_{ heta} \prod_{i=1}^n p(y^{(i)}|x^{(i)}, heta) p(heta)$$

$$p(\theta|S) = \frac{p(S|\theta)p(\theta)}{p(S)}$$
$$= \frac{\left(\prod_{i=1}^{n} p(y^{(i)}|x^{(i)},\theta)\right)p(\theta)}{\int_{\theta} \left(\prod_{i=1}^{n} p(y^{(i)}|x^{(i)},\theta)p(\theta)\right)d\theta}$$

Maximum a posteriori (MAP)

- Approximate the posterior distribution for θ
- Use single point

$$\theta_{\text{MAP}} = \arg \max_{\theta} \prod_{i=1}^{n} p(y^{(i)} | x^{(i)}, \theta) p(\theta)$$

$$= \frac{\left(\prod_{i=1}^{n} p(y^{(i)} | x^{(i)}, \theta) p(\theta)\right)}{\int_{\theta} (\prod_{i=1}^{n} p(y^{(i)} | x^{(i)}, \theta) p(\theta))}$$

Additional term compared with MLE

 $(u^{(i)}|x^{(i)},\theta)p(\theta)) d\theta$

 $p(\theta|S) = \frac{p(S|\theta)p(\theta)}{\sqrt{2}}$

- The prior $p(\theta)$ is usually assumed to be $\theta \sim \mathcal{N}(0, \tau^2 I)$
- Parameters with smaller norm are more preferred than MLE
- Less susceptible to overfitting

Summary

Regularization

- Intuition, common regularizers
- Implicit regularization effect
 - Optimizer in deep learning
- Model selection via cross validation
 - Hold-out CV
 - K-fold CV
- Bayesian statistics and regularization
 - MAP